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Abstract 

Nearly one million patients in the United States suffer from movement disorders, often undergoing awake 

brain surgeries where surgeons need to track upper arm movements using optical trackers. These surgeries 

pose challenges due to the operating room environment and the complexity of calibrating multiple sensor 

systems together, which can introduce sensor errors. This study compares error differences in optical 

tracking when using different sensor configurations and under various experimental conditions such as 

tracker mode, arm velocity, and tremor presence. Results indicate that combining different sensors 

increases errors, and certain experimental configurations prevent high positional measurement accuracy 

needed in behavioral tasks. Our findings suggest that for optimal position tracking in surgical settings, 

decreased movement velocity and upper extremity tremor seem to minimize optical sensor positional 

errors.  

 
 



Introduction 

Background in the Neural Correlates of Movement 

The human brain and the neural correlates of limb movement are complex biological mechanisms that 

underpin human health, mobility and state-of-the-art robotics technology. Nearly one million patients in 

the USA suffer from movement disorders, often undergoing awake brain surgeries where surgeons need to 

track upper arm movements using optical trackers. These efforts often utilize clinical translational studies 

that integrate experimental neurosurgery with novel brain-computer interface (BCI) technologies in early 

stages of development. The challenge lies in the need for extremely precise acquisition of both neural and 

kinematic data—accurate positional tracking of both the target and the subject’s arm is critical to these 

studies. Currently, existing kinematic tracking technology is not yet optimized for the nuanced and 

complex environment of the surgical operating room, and the complexity of calibrating multiple sensor 

systems together inevitably introduces sensor errors. The precision of data collection is compromised by 

the calibration requirements of combining different sensor modalities that measure the positions of the 

target and the subject’s arm, highlighting a significant hurdle in advancing these important translational 

studies. Existing motion capture systems in biomechanical and robotics research use multimodal sensors 

for posturing analysis. Common sensor modalities include inertial measurement unit (IMU), optical 

tracking, piezoelectric gloves and external jointed robotic arm frames to precisely measure the absolute 

location in space of a subject’s forearm and finger position. In this study, I aim to explore the intricate 

considerations of utilizing optical tracking sensors in the surgical environment by identifying specific 

experimental sources of positional errors and quantifying the sensor’s positional accuracy.  

 
 



Current Optical Tracking Sensor Systems 

The HTC Vive system is a consumer-grade motion capture system typically used in virtual reality 

applications - the system consists of a headset, auxiliary sensors and external lighthouse cameras called 

base stations. The base stations emit synchronized light sweeps, and trackers that use photodiodes to 

measure light pulse timings as a proxy for estimating the horizontal and vertical angles to lighthouses. 

The trackers fuse angle measurements from a bundle of rigid photodiodes together to estimate the pose 

using a technique similar to Angle-of-Arrival. The tracker also has access to motion data from an 

incorporated Inertial Measurement Unit (IMU) to maintain a smooth and continuous trajectory. The IMU 

is a small stand-alone device that integrates different multiaxial sensors (i.e., accelerometer, gyroscope, 

and magnetometer). The raw data collected by each integrated sensor are complemented via real-time 

sensor-fusion algorithms to achieve a complete description in terms of motion, rotation, and heading with 

respect to the sensor’s own reference frame. IMUs can address different body parts to enable direct 

determination of kinematics, providing data of angular acceleration, velocity, and spatial orientation. 

 

Environmental Challenges Affecting Sensors in the Operating Room 

​​Environmental factors such as tracker placement, beacon angle, electromagnetic interference, physical 

visual occlusion in the operating room will affect the effectiveness of sensor tracking, along with 

positional accuracy. Multiple trials will be conducted assessing manipulation of such environmental 

variables and its effect on sensor reliability. Statistical analyses will be conducted to examine deviation 

from a ground truth, which will be established from baseline recordings established from the HTC Vive 

and visual base station system Given the difficulty of obtaining positional ground truth in the operating 

room environment, the error difference between kinematically constrained and unconstrained calibration 

serves as a proxy to indicate reliability of measurements and whether significant positional errors are 

introduced during a procedure. During our experiment where neural signals and physical kinematic 

movements are recorded, obtaining precise kinematic data is essential. To ensure reliable data collection 



within a minimal margin of error, kinematic error differences will be checked throughout recording 

sessions. Efforts to maintain measurement reliability may result in limiting patient recruitment based on a 

criterion of permissible tremor and range of motion.  

 

 
Figure 1: The hardware configuration of HTC Vive optical trackers (Borges, 2018) 
 

Motivation and Research Question 

There is a lack of analysis in tracking performance of the Vive tracker under dynamic movement in 

complex environments, as well as the accuracy improvements that could be achieved by fusing other 

sensors at the component level. Similar to studies by Barclay (2023), Borges (2018) and Weber (2023), 

we integrate both IMU sensors with optical trackers to quantify human upper extremity movements in 

behavioral tasks.We seek to identify how error differences can be minimized and which factors—such as 

base station components, movement speed, and calibration sequences—affect the magnitude of error in 

positional data.  We are further extending research into the viability of specifically HTC VIVE optical 



trackers as i) a source of ground truth in the absolute coordinate space and ii) its utility as a separate 

moving target for reach tasks. By measuring the absolute error introduced through several reach tasks and 

analyzing movement features, we hypothesize that base station movement, increased velocity and tremor 

presence in reach movements will lead to a rise in total observed error, underscoring the need for 

meticulous calibration and setup in experimental designs. 

Methods 

I used the following equipment to execute experimental trials and collect data: Movella Xsens inertial 

sensor kit, 2 HTC VIVE optical trackers, 2 HTC VIVE base stations, 2 StretchSense gloves. For each 

movement recording, we recorded through the Movella Xsens software and SteamVR Brekel viewer.  

HTC Vive Sensor Setup 

The Vive VR system was used to create and immerse the participants in the virtual environment. HTC 

Base stations were set up approximately 2 meters away from each other facing straight forward. 

Calibration involved using a HTC Vive sensor being placed halfway between both base stations at ground 

level to establish an absolute spatial origin. The subject then stands approximately 6 feet away, sitting on 

a mock platform simulating the surgical operating table. Each HTC Vive sensor is secured onto a 

predetermined location along the subject’s forearms using a screw-on mount, with the photodiode 

antennae facing outwards to be visible for the base stations.  

 

Xsens Movella IMU Calibration and Integration 

UE movement data were recorded using the Xsens MTw Awinda System (MVN version 2020.0.0, 

Enschede, Netherlands). The system included 17 IMUs placed on the head, arms, and legs according to 

the Xsens MVN User Manual. Body measurements were taken with a measuring tape and inserted into 

the software to create an appropriately sized motion capture model. A brief calibration was then 



completed to ensure the accuracy of the model. Each participant was asked to stand in a neutral position 

with both arms straight to the side and head facing forward (N-Pose). Alternative calibration 

configurations include the T-Pose, where the subject has arms extended outwards along the body axis to 

form a T-shape. Participants then walked in a straight line, turning around when the software indicated. 

(Barclay, 2018) 

 
Calibration of the Xsens system integrates both the optical tracker (HTC Vive) and IMU (Xsens Movella) 

sensor modalities. Subsequent adjustments to achieve satisfactory calibration quality included the ‘Axis 

Reset’ and ‘Ground Reset’, in which the subject must additionally move their upper arms in various 

positions and orientations to correctly align axes and establish the correct height of the subject from the 

ground. Reach forward, to the sides, and upwards. Repeat for 10 Seconds. Hold T-pose again for 10 

seconds for final calibration and processing. 

 
Satisfactory calibration is indicated by a ‘Calibration Quality: Good’, as qualitatively determined relative 

to the Xsens algorithm quality. We did not measure the exact metrics used by Xsens in distinguishing a 

‘Good’ calibration from ‘Poor’. The subject was positioned in a semi-fowler’s position to simulate patient 

positioning during a neurosurgical operation.  

 

Experimental Design Setup 

The reach tasks assessed in each recording trial were the following: The left arm remained static, while 

the right arm reached forward towards a target approximately arm-length away. Starting from resting 

position, the right arm extended to grasp the target before returning back to position. A 4 total of 4 

positions were assessed: low-elevation versus high-elevation, contralateral versus ipsilateral reach. 

 
 



Experiment 1: To measure the effect of base station movement on tracker position vector difference, the 

aforementioned sequence of behavioral tasks was executed to completion for Trial 1. Then, the Vive base 

stations were unplugged, completely powered down and transferred across the room and reset to simulate 

the patient being transferred from preoperative room to the operating room. The aforementioned sequence 

of behavioral tasks were repeated afterwards.  

 
Experiment 2: To measure the effect of movement velocity and tremor on system position error and 

difference-difference error, the aforementioned sequence of behavioral tasks was executed but with 

variable movement characteristics. To assess movement velocity, 2 experimental conditions were 

implemented to simulate faster (approximately 1 m/s) and slower (approximately 0.5 m/s) reach speeds. 

To assess tremor, the subject presented slight shakiness in their arm across the duration of the 

experimental sequence. 

 

Data Types and Relevant Metrics 

Absolute position x, y and z coordinates based on a global coordinate system were collected via Blender 

from both the independent sensor (Brekel) and integrated sensor systems. integrated sensor systems 

(Movella).  

 



 
Data Type or 
Metric 

Description 

Position data (x, 

y, z) 

Over 4000 frames (60-70 second recording) for 2 tracker systems: independent 

sensor (Brekel) and integrated sensor systems (Movella).  Raw data was formatted 

as <Time/Frame, x, y, z> position defined by conventions of the FBX file format 

when imported into 3D visual editing environments. (Blender) 

System Vector 

Differences 

System Vector Differences: Position vector between 2 trackers within the same 

system. The vector difference between the optical trackers placed on the right and 

left arm is calculated as the difference of tracker positions. (Experiment 2) 

Difference of 

System Vector 

Differences 

The difference between the independent sensor and integrated sensor system 

position vectors is calculated to determine the relative amount of error offset 

between the 2 systems. (Experiment 2) 

 

Coordinate Axes Alignment 

There is the challenge of differing coordinate axes between independent optical trackers and 

Movella-integrated optical trackers, necessitating the alignment of vectors in coordinate axes space to 

accurately compare the difference of differences, which serves as a proxy for the net error deviation from 

ground truth. Additionally, the systems differ in their definition of local origin points: the independent 

sensor system, Brekel, centers its origin at the subject's hip position, whereas the integrated sensor 

system, Movella, establishes its origin at the position of the closest HTC Vive Base Station. These 

disparities highlight the critical need for precise calibration and alignment to ensure reliable position 

measurements across different tracking systems. 



 
Figure: Each sensor component has a unique local coordinate system. (Blender) 
 

 

 

 

 
 

Figure: Before and after correcting for coordinate axes alignment. (Blender) 
 



 
Figure: The following transformation matrix was applied.  
 

 

 



 
Figure: Position vectors of a given sensor position between 2 different systems.  
 

 



Results 

Analysis 1: Effect of Base Station Movement on Tracker Position Vector Difference 

 
Statistic Trial 1:  

Preoperative Task 
Trial 2:  

Intraoperative Task 

Mean (cm) -0.0618 0.304 

Standard Deviation (cm) 4.255 0.454 

N 2500 2500 

Standard Error 0.08507 0.00908 
 

 
​
​
​
​
 

 



Analysis 2: Effect of Velocity and Tremor on System Position Error and 

Difference-Difference 

 
Trial Velocity Tremor Total Error 

(cm) 
X Mean Error 

(cm) 
Y Mean Error 

(cm) 
Z Mean Error 

(cm) 

1 Fast None 1.794 -1.361 0.891 0.757 

2 Slow None 0.866 0.632 0.576 -0.135 

3 Fast Present 9.855 -7.768 5.700 -2.073 

4 Slow Present 9.162 -8.6944 0.0114 2.889 
 

 
 

In the regression analysis conducted, the model's residuals were closely clustered around zero, indicating 

a well-fitting model with minimal deviation from predicted values. The coefficients revealed significant 

predictors within the model: tremor had a considerable impact on the dependent variable with an estimate 

of 8.1785 and was highly significant (p = 0.00915), suggesting robust evidence for its effect. Velocity also 

appeared influential with an estimate of 0.8106, though its p-value of 0.09171 suggests marginal 

significance. The model exhibited an exceptionally high goodness of fit, with a multiple R-squared value 

of 0.9998 and an adjusted R-squared of 0.9994, indicating that nearly all variability in the dependent 

variable could be explained by the model. The overall model was statistically significant as reflected by 

an F-statistic of 2442 on 2 and 1 degrees of freedom, with a p-value of 0.01431, confirming the predictive 

power of the included factors. 

 

 
 



Discussion 

Results and analyses seem to confirm the significance of base station movement, increased velocity and 

tremor presence on increasing positional error introduced. Such findings support our initial hypothesis 

that variables unique to the operating room environment (base station movement, increased velocity and 

tremor presence) cause significant error and would limit the applications integrated optical tracker 

systems to less precise behavioral tasks. The total error computed for various experimental conditions 

ranged from 0.866 cm to 9.855, in which tremor greatly introduced positional error. Assuming that 

subjects present minimal tremor, the amount of error introduced would still be within the acceptable 

margin of approximately 2-3 cm. 

 
There are several limitations with the experimental design that could impact the validity of the findings. 

The use of the Difference of Difference method to measure total error effectively eliminates linear 

translation effects, but it may not adequately capture mean error variations. Additionally, the experimental 

setup included only a small number of trials, with just two trials in Experiment 1 and four in Experiment 

2, potentially limiting the statistical power and robustness of the conclusions. Furthermore, the accuracy 

of replicating the base station's Vive position and orientation relied heavily on visual inspection, 

introducing subjectivity and potential inaccuracy into the experimental results. 

 
Future research could enhance the accuracy and relevance of findings by adopting more sophisticated 

pattern classification approaches to examine the signal features, aiming to more precisely correlate 

specific movement sequences with spikes in error offset. This could help better characterize the effects of 

large spikes in error offset caused by optical tracker occlusion or interference. Additionally, investigating 

the direct difference vector between Brekel and Movella sensor positions rather than using the difference 

of differences might provide a clearer representation of absolute ground truth deviation by directly 

measuring the distance between sensors. Applying consistent experimental conditions across all variables 

(base station movement, increased reach velocity, and tremor presence) will standardize the data 



collection process. Finally, addressing the sensor drift observed 30 seconds into recordings with tremor is 

critical - further understanding and optimization of software algorithms used during sensor fusion could 

mitigate total error deviation and improve overall experimental accuracy. 
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